SHARP

Spec No.	DG-125027C
Issue	06-Feb-14

S P E C I F I C A T I O N S

Product Type

ZENIGATA LED

Model No.

GW6BGS**HED

** : 27, 30, 40, 50

*These specifications contain $\underline{19}$ pages including the cover and appendix. If you have any objections, please contact us before issuing purchasing order.

CUSTOMERS ACCEPTANCE

DATE:

BY:

Preliminary	
I I CIIIIIIII y	

PRESENTED

BY:

Dept. General Manager

REVIEWED BY: PREPA

PREPARED BY:

Development Department II Lighting Device Division Electronic Components And Devices Group SHARP CORPORATION

Model No. **GW6BGS**HED**

• Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.

• When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting form failure to strictly adhere to these conditions and precautions.

(1) Please do verify the validity of this part after assembling it in customer's products, when customer wants to make catalogue and instruction manual based on the specification sheet of this part.

(2) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in paragraph (3), even for the following application areas, be sure to observe the precautions given in Paragraph (3). Never use the products for the equipment listed in Paragraph (4).

- ·Office electronics
- ·Instrumentation and measuring equipment
- Machine tools
- ·Audiovisual equipment
- •Home appliances
- ·Communication equipment other than for trunk lines

(3) These contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.

·Control and safety devices for airplanes, trains, automobiles, and other

- transportation equipment
- · Mainframe computers
- traffic control systems
- ·Gas leak detectors and automatic cutoff devices
- ·Rescue and security equipment
- ·Other safety devices and safety equipment, etc.

(4) Do not use the products covered herein for the following equipment which

demands extremely high performance in terms of functionality, reliability, or accuracy.

- ·Aerospace equipment
- ·Communications equipment for trunk lines
- ·Control equipment for the nuclear power industry
- ·Medical equipment related to life support, etc.
- (5) please direct all queries and comments regarding the interpretation of the above four Paragraphs to a sales representative of the company.

Please direct all queries regarding the products covered herein to a sales representative of the company.

		G-125 0
HARP	Model No. GW6BGS**HED	Page
	GW0BG5**HED	1 0
GW6BGS**HED specifications		
1. Application		
These specifications apply to the light emitting diode module Model N	lo. GW6BGS**HED.	
[LED module (InGaN Blue LED chip + Phosphor)]		
Main application : Lighting		
2. External dimensions and equivalent circuit Refer to	Page 2	
3. Ratings and characteristics Refer to) Page 3- 5.	
3-1. Absolute maximum ratings		
3-2. Electro-optical characteristics		
3-3. Derating curve		
 Reliability Refer to 4-1. Test items and test conditions 	Page 6	
4-2. Failure criteria		
5. Quality level Refer to	Page 7	
5-1. Applied standard		
5-2. Sampling inspection		
5-3. Inspection items and defect criteria		
6. Supplements Refer to	9 Page 8- 13.	
6-1. Chromaticity rank table	-	
6-2. Packing		
6-3. Label		
6-4. Indication printed on product		
7. Precautions Refer to	Page 14- 16	
8. Characteristics diagram (TYP.) Refer to	Page 17	

			G-125027
HARP		Model No. GW6BGS**HED	Page 2 of 1
		GWODGS HED	2 01 1
2. External dim	nensions and equivalent circuit		
	15. 0 +0.5/-0.1 ① (11. 6)		
	(10.0)		
Top view			
		2. 0	
($(6.5) \qquad \qquad$	2 2	
	i i		
Side view			
She view	(1.4) 1.0±0.1		
	(Note) Values inside parentheses are reference values. External sizes of (I) , (2) are determined by maximum din	nanciona	
	that include salient areas on the edges of respective sides		
Equivalent circ	suit .		
Equivalent ene			
		- connection - terminal	
t	terminal	con minar	
	(Note) 12 series v 5 percellel - 60 mas of LEDs		
	(Note) 12 series \times 5 parallel = 60 pcs of LEDs		
Unit	Material Substrate : Alumina Ceramic	Drawing No 52405012	

SHARP

Model No.PageGW6BGS**HED3 of 17

3. Ratings and characteristics

3-1. Absolute maximum ratings

Item	Symbol	Rating	Unit
Power Dissipation *1,4	Р	25.7	W
Forward Current *1,4	I _F	650	mA
Reverse Voltage *2,4	V _R	-15	V
Operating Temperature *3	T _{opr}	$-30 \sim +100$	°C
Storage Temperature	T _{stg}	- 40 ~ + 100	°C
Junction Temperature	Tj	145	°C

*1 Power dissipation and forward current are the values when the module temperature is set lower than the rating by using an adequate heat sink.

*2 The maximum rating of reverse voltage is assumed, after considering the voltage that occur due to initial connection error that may occur suddenly.

(Not dealing with the possibility of always-on reverse voltage.)

*3 Operating temperature is the Case temperature Tc

(Refer to measuring point for case temperature in the next page.)

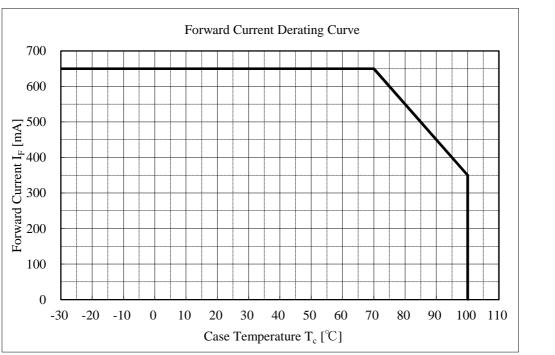
Refer to "Derating curve" in the next page as for operating current.

*4 $T_c = 25 \ ^{\circ}C$

SHARP

Model No. Page GW6BGS**HED 4 of 17

3-2. Electro-optical characteristics

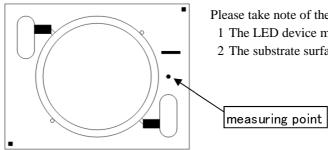

							(Tj = 9	0 °C)
**	Item	Symbol	0	Conditio	on	MIN.	TYP.	MAX.	Unit
common	Forward Voltage *5	VF	I _F =	400	mA	31.6	(34.8)	39.6	V
	Luminous Flux*6	Φ				865	(1095)	-	lm
	Chromaticity Coordinates *7	x				-	(0.4610)	-	-
27	Chromaticity Coordinates 7	у	I _F =	400	mA	-	(0.4150)	-	-
	Color Temperature	-				-	(2720)	-	K
	General Color Rendering Index *8	Ra				90	(93)	-	-
	Luminous Flux*6	Φ				915	(1160)	-	lm
		X				-	(0.4370)	-	-
30	Chromaticity Coordinates *7	у	I _F =	400	mA	-	(0.4030)	-	-
	Color Temperature	-				-	(2990)	-	K
	General Color Rendering Index *8	Ra				90	(93)	-	-
	Luminous Flux*6	Φ				955	(1205)	-	lm
	Chromoticity Coordinates *7	x				-	(0.3820)	-	-
40	Chromaticity Coordinates *7	у	I _F =	400	mA	-	(0.3800)	-	-
	Color Temperature	-				-	(3980)	-	K
	General Color Rendering Index *8	Ra				90	(92)	-	-
	Luminous Flux*6	Φ				970	(1225)	-	lm
		x				-	(0.3480)	-	-
50	Chromaticity Coordinates *7	у	I _F =	400	mA	-	(0.3600)	-	-
	Color Temperature	-				-	(4920)	-	K
	General Color Rendering Index *8	Ra				87	(90)	-	-

(Note) Values inside parentheses are shown for reference purpose only.

- *6 Monitored by Sharp's 8 inch integrating sphere and Otsuka electronics MCPD-LE3400 (After 20 ms drive, Measurement tolerance: ± 10 %)
- *7 Monitored by Sharp's 8 inch integrating sphere and Otsuka electronics MCPD-LE3400 (After 20 ms drive, Measurement tolerance: ± 0.005)
- *8 Monitored by Sharp's 8 inch integrating sphere and Otsuka electronics MCPD-LE3400 (After 20 ms drive, Measurement tolerance: ± 2)

^{*5 (}After 20 ms drive, Measurement tolerance: \pm 3 %)

SHARP Model No. GW6BGS**HED 3-3. Derating curve Forward Current Derating Curve



(Note) To keep the case temperature lower than the rating, enough heat-radiation performance needs to be secured by using an adequate heat sink (refer to section 8-③).

For soldering connection, please evaluate in your usage environment to make sure soldering reliability. (Above derating curve is specified to LED device, not for soldering connection) And please consider to avoid physical stress between wire and substrate, and some protection like silicon bond on top of soldered wire is recommended.

Please ensure the maintenance of heat radiation does not exceed case temperature over the rating in operation.

(Measuring point for case temperature)

Please take note of the following, when measuring case temperature.1 The LED device mounting surface should be flat/plain surface.2 The substrate surface temperature should be uniform.

DG-125027C

Page

5 of 17

Thermal Resistance: 2.7 °C/W(Typical value)

Model No. GW6BGS**HED 6 of 17

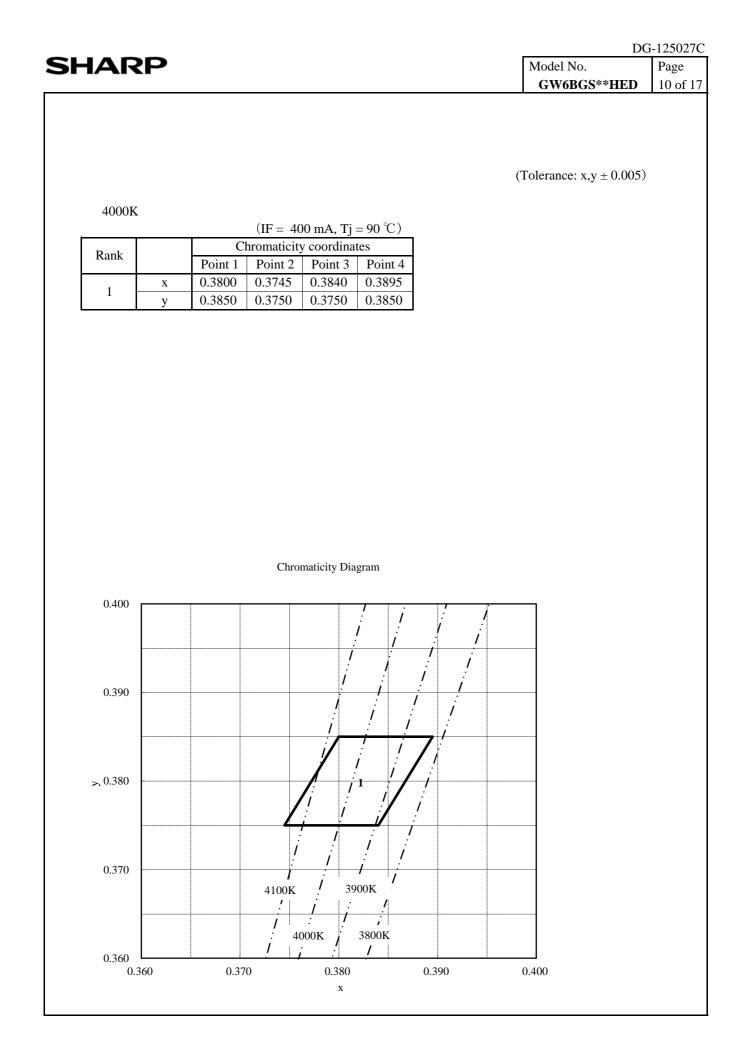
4. Reliability

The reliability of products shall be satisfied with items listed below.

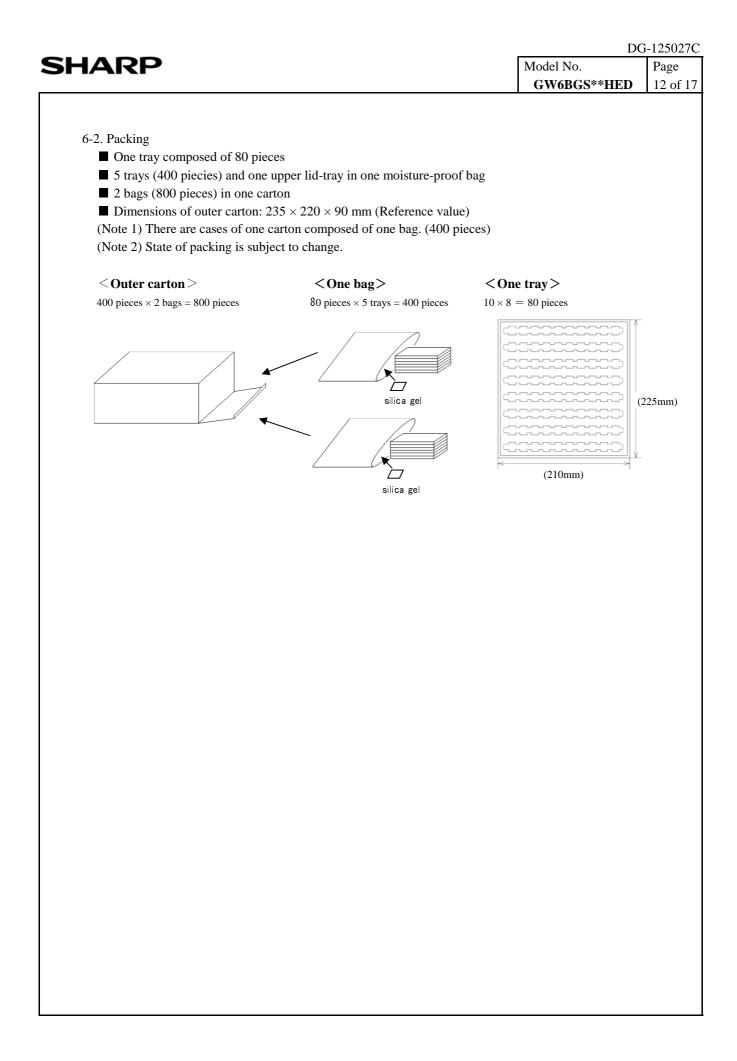
4-1.7	Test items and test condit	tions	Co	nfidence le	vel: 90 %
No.	Test item	Test conditions	Samples	Defective	LTPD
			n	С	(%)
1	Temperature Cycle	- 40 °C(30 min) \sim + 100 °C(30 min), 100 cycles			
			11	0	20
2	Temperature Humidity	$T_{stg} = +60 ^{\circ}\text{C}, \text{RH} = 90 ^{\circ}\text{, Time} = 1000 \text{ h}$			
	Storage		11	0	20
3	High Temperature	$T_{stg} = +100^{\circ}C$, Time = 1000 h			
	Storage		11	0	20
4	Low Temperature	$T_{stg} = -40 \text{ °C}, \text{ Time} = 1000 \text{ h}$			
	Storage		11	0	20
5	Steady State Operating	$Tc = 60 \ ^{\circ}C$, IF = 650 mA, Time = 1000 h			
	Life		11	0	20
6	Shock	Acceleration: 15000 m/s^2 , Pulse width: 0.5 ms			
		Direction: 3 directions (X, Y and Z)			
		3 trials in each direction	5	0	50
7	Vibration	Frequency: 100 to 2000 Hz for 4 minutes per trial			
		Acceleration: 200 m/s ²			
		Direction: 3 directions (X, Y and Z)			
		4 trials in each direction	5	0	50

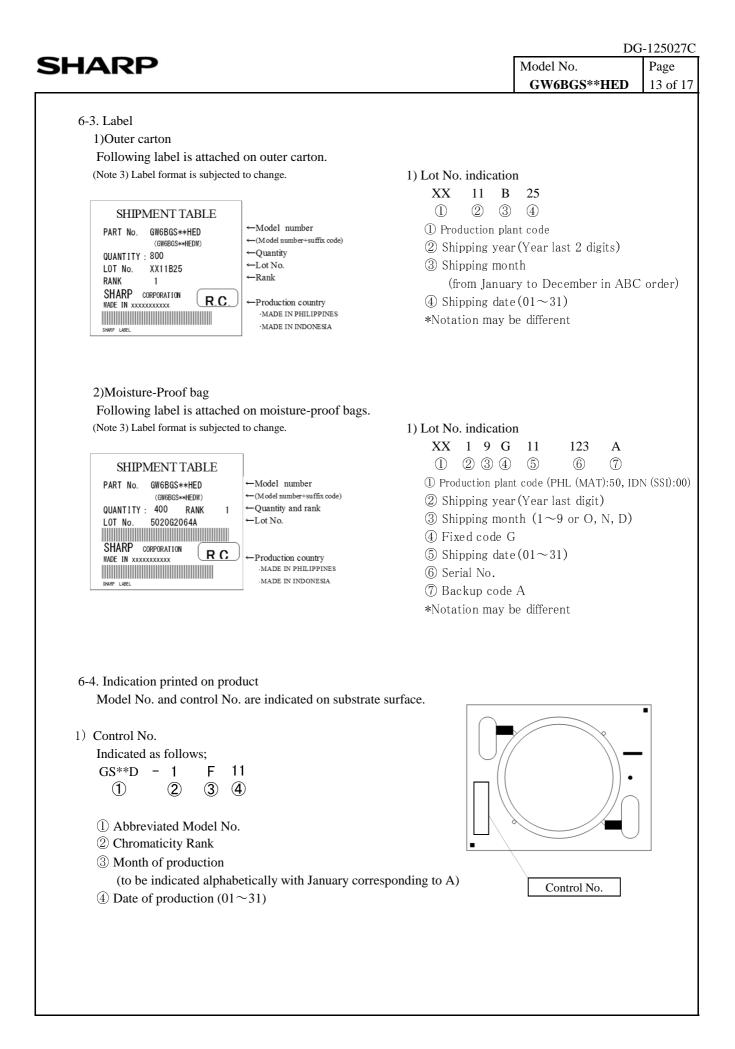
4-2. Failure criteria

No.	Parameter	Symbol	Failure criteria
1	Forward Voltage	V _F	$V_F > Initial value \times 1.1$
2	Luminous Flux	Φ	$\Phi \le$ Initial value $\times 0.7$


ГЛ		5		DG-	-125027
	RP	1	Model No. GW6BGS**H		Page 7 of 1
5-1. A IS 5-2. S	ality level Applied standard 3O2859-1 Sampling inspecti single normal sat	on mpling plan, level S-4.			
5-3. I No.	nspection items a	nd defect criteria Defect criteria		4.01	
	No radiation		Classification	AQI	_
1	INO TAUTATION	No light emitting	Major defect	0.1	
2	Electro-optical	Not conforming to the specification			
	characteristics	(Forward voltage, Luminous flux and Chromaticity values)			
3	External	Not conforming to the specified dimensions			
	dimensions				
	annensions	(External dimensions of $①$ and $②$ shown in Page 2)			
4	Appearance	(External dimensions of (1) and (2) shown in Page 2) Nonconformity observed in product appearance is determined	Minor		
4			Minor defect	0.4	
4		Nonconformity observed in product appearance is determined	_	0.4	
4		Nonconformity observed in product appearance is determined as defective only when electro-optical characteristics is affected by.	_	0.4	
4		Nonconformity observed in product appearance is determined as defective only when electro-optical characteristics is affected by. <if above="" any="" arises="" criterion="" mentioned="" of="" question="" regardless=""></if>	defect	0.4	
4		Nonconformity observed in product appearance is determined as defective only when electro-optical characteristics is affected by. <if above="" any="" arises="" criterion="" mentioned="" of="" question="" regardless=""> ■ Foreign material, scratch, or bubble at emitting area: 0.8 mm φ</if>	defect	0.4	

(Note) Products with removable foreign material attached on are not determined to be defective.


(Note) Substrate cracks that do not effect the electrical/optical charecteristics are not determined to be defective.

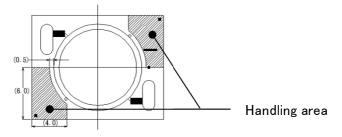

	Ρ							Model No. GW6BGS	DG	Page 8 of 1
								GWUDGS		8 01 1
6. Supplem	ents									
6-1. Chron	naticity r	ank table					(*	Folerance: x,y	$t \pm 0.005)$	
2700K										
			(IF = 400)							
Rank		Point 1	Chromaticity Point 2	Point 3	Point 4					
1	Х	0.4590	0.4535	0.4630	0.4685					
1	У	0.4200	0.4100	0.4100	0.4200					
			Chrom	aticity Dia	gram					
			Chrom	aticity Dia	gram					
0.435 -			Chrom		gram					
^{0.435} [Chrom		gram			7		
0.435			Chrom	aticity Dia	gram					
0.435			Chrom		gram					
0.435			Chrom		gram			Ż		
0.435			Chrom		gram					
			Chrom		gram					
0.435			Chrom		gram					
			Chrom		gram					
			Chrom		gram					
			Chrom		gram					
			Chrom		gram		/			
			Chrom		gram		/			
0.425			Chrom		gram					
			Chrom		gram					
0.425			Chrom		gram					
0.425			Chrom		gram					
0.425			Chrom		gram					
0.425			Chrom		gram					
0.425 > 0.415		2800								
0.425					gram					
0.425 > 0.415										
0.425 > 0.415										
0.425 > 0.415										
0.425 > 0.415										
0.425 > 0.415 0.405 0.395										
0.425 > 0.415 0.405 0.395	40	; ;	, , , , , , , , , , , , , , , , , , ,	и и и и и и и и и и и и и и и и и и и		0.470				
0.425 → 0.415 0.405	40		, , , , , , , , , , , , , , , , , , ,			0.470		0.480		

IAR		Model No.	Page
	·	GW6BGS**HED	9 of 17
3000K Rank 1	$\begin{array}{c} (IF = \ 400 \ mA, \ Tj = 90 \ ^{\circ}C) \\ \hline \\ \hline \\ \hline Point \ 1 \\ x \\ 0.4350 \\ 0.4295 \\ 0.4390 \\ 0.3980 \\ 0.3980 \\ 0.4080 \\ \end{array}$	(Tolerance: x,y ± 0.005))
0.425	Chromaticity Diagram		
0.425			
0.415			
0.415 >, 0.405			

		DO Model No.	Page
ARF		GW6BGS**HED	11 of 1
		(Tolerance: $x, y \pm 0.005$)	
5000K	$(IF = 400 \text{ mA}, Tj = 90 \degree \text{C})$		
Rank	Chromaticity coordinates Point 1 Point 2 Point 3 Point 4		
1	x 0.3460 0.3405 0.3500 0.3555		
1	y 0.3650 0.3550 0.3550 0.3650		
	Chromaticity Diagram		
	Chromaticity Diagram		
0.380			
0.380		r	
0.380		K	
0.380		K	
0.380		K	
		К	
0.380		К	
		К	
		K	
		К	
0.370		К	
		K	
0.370		K	
0.370 > 0.360		K	
0.370		K	
0.370 > 0.360		K	
0.370 > 0.360		K	
0.370 > 0.360		K	
0.370 > 0.360 0.350		K	
0.370 > 0.360	5200K 5000K 4800K 4600	K Image: Imag	

	DG-12	
HARP		Page
	GW6BGS**HED 1	4 o
7. Precautions		
① Storage conditions		
Please follow the conditions below.		
• Before opened: Temperature 5 \sim 30 $^\circ\!\mathrm{C}$, Relative humidity less than 60 %.	
(Before opened LED should be used with	in a year)	
• After opened: Temperature 5 \sim 30 °C, 1	Relative humidity less than 60 %.	
(Please apply soldering within 1 week)		
•After opened LED should be kept in an all	luminum moisture proof bag with a moisture	
absorbent material (silica gel).		
• Avoid exposing to air with corrosive gas	S.	
If exposed, electrode surface would be da	amaged, which may affect soldering.	
② Usage conditions		
This product is not designed for the use ur		
• •	nd reliability well enough in case of using under any of the	
following conditions;		
•In a place with a lot of moisture, dew con	densation, briny air, and corrosive gas.	
(Cl, H2S, NH3, SO2, NOX, etc.)		
•Under the direct sunlight, outdoor exposu		
•In water, oil, medical fluid, and organic s		-
	ober which may contain sulfur (gasket packing, adhesive materia	al,
etc.).		
The heat and light released from the LED of	olic elements could effect the silicon resin used in the LED devi device, could generate halogen gas from the surrounding materi dule. Before using please consider carefully about this issue.	
③ Heat radiation and Installation		
If forward current (IF) is applied to single or emitting smoke, due to increase in temp	-state module at any current, there is a risk of damaging LED perature.	
•	k), and avoid heat being stuffed inside the module.	
	f installed inappropriately, trouble of insufficient heat radiation	ma
occur, which may result in board cracks o	or lighting defects due to overheat. Please take particular notice	for
installation.		
Refer to the following cautions while instal	lling the LED device on heat sink.	
• Apply thermolysis adhesive, adhesive she	eet or peculiar connector when mounted on heat radiator.	
	sheet only, check the effectiveness and reliability before fixing.	•
	sual temperature rise entails hazardous phenomena including	
-	r at leads, and emitting smoke, along with LED device deffects.	
-	or locked, Please take into consideration regarding the method of	of
attachment due to fail from stress.		
	n carefully, when fixing the LED device using holder. Any	
excessive or uneven stress could break LI	ED device's substrate.	
• Avoid convexly uneven boards.		
Convex board is subject to substrate crack	-	
	dhesive sheet with high thermal conductivity	
for radiation of heat effectively.	lon shapped of adhesing on a discission share in initial and the	
· r lease take care about the influence of co	lor change of adhesive or adhesive sheet in initial and long tern	11

• Please take care about the influence of color change of adhesive or adhesive sheet in initial and long term period, which may affect light output or color due to change of reflectance from backside.


	DG	G-125027C
SHARP	Model No.	Page
	GW6BGS**HED	15 of 17
• Any excessive or uneven stress on the ceramic substrate could break the subs	strate. Please design such	that,
proper/uniform stress is applied on the substrate, when fixing the LED device	e using a holder.	
When fixing the LED device with a holder please take note if any excessive	or uneven stress is applie	hd

- •When fixing the LED device with a holder, please take note if any excessive or uneven stress is applied when pressing the substrate with holder. Due to this, the gap may arise between LED device and adhesive material, which may affect the heat dissipation of the device.
- Do not touch resin part including white resin part on the surface of LED.

No light emission may occur due to damage of resin or cutting wire of LEDs by outer force.

When using tweezers, please handle by ceramic substrate part and avoid touching resin part.

For mounting, please handle by side part of ceramic or the specified area shown below.

• The outer edges of the substrate may be uneven in some cases. Please avoid choosing these areas as fixing points, while designing for installation.

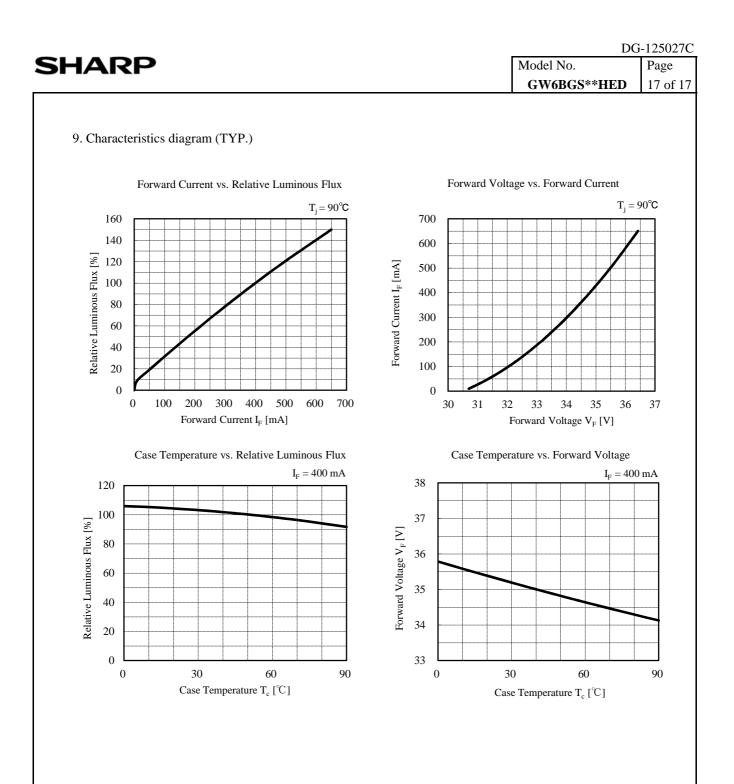
• In case of using heat radiation sheet or heat radiation adhesive, light reflection or absorption of these materials may influence the output of LED device. Especially, the color change that occur due to l ong-term use has direct impact on output of LED devices, and hence careful consideration is required while choosing the radiation sheet ro adhesive.

④ Connecting method

Use soldering for conncetions. Follow the conditions mentioned below, to preserve the connection strength.

- ·Use soldering iron with thermo controller (tip temperature 380 $^\circ$ C), within 5 seconds per one place.
- · Secure the solderwettability on whole solder pad and leads.
- During the soldering process, put the ceramic board on materials whose conductivity is poor enough not to radiate heat of soldering.
- •Warm up (with using a heated plate) the substrate is recommended before soldering.

(preheat condition: 100 $^\circ\!\mathrm{C}$ \sim 150 $^\circ\!\mathrm{C},$ within 60 sec)


- ·Avoid touching any part of resin with soldering iron.
- · This product is not designed for reflow and flow soldering.
- · Avoid such lead arrangement as applying stress to solder-applied area.
- · Please do not detach solder and make re-solder.
- •Please solder evenly on each electrode.
- ·Please prevent flux from touching to resin.
- ·Do the soldering on stable stand. Avoid soldering on moving or vibrating objects.
- •Please avoid touching the soldering unit to resin.
- (5) Static electricity

This product is subject to static electricity, so take measures like wearing wrist band to cope with it. Install circuit protection device to drive circuit, if necessary.

6 Drive method

• Any reverse voltage cannot be applied to LEDs when they are in operation or not. Design a circuit so that any flow of reverse or forward voltage can not be applied to LEDs when they are out of operation.

			DG-125027	
IA F	S P	Model No.	Page	
		GW6BGS**HED	16 0	
۰Mo	dule is composed of LEDs connected in both series and parallel.			
	stant voltage power supply runs off more than specified current amount c	lue to lowered VF		
	bed by temperature rise. Constant current power supply is recommended t			
•Be	cautious while putting on/off the power supply, as excess current, excess	voltage or reverse voltage	ge may	
inju	acted to the device in some cases.			
⑦ Clean	ing			
Avoi	d cleaning, since LED device may be effected in some cases by cleaning			
8 Color	tone variation			
Chro	maticity of this product is monitored by integrating sphere right after the	operation.		
	maticity varies depending on measuring method, light spread condition,	or ambient temperature.		
Pleas	se verify your actual conditions before use.			
9 Safet	y			
	king directly at LEDs for a long time may result in hurting your eyes.			
	ase that excess current (over ratings) is supplied to the device, hazardous	phenomena including		
	ormal heat generation, emitting smoke, or catching fire can be caused.			
	e appropriate measures to excess current and voltage.			
	ase of solder connecting method, there is a possibility of fatigue failure b	-		
	ase fix the leads in such case to protect from short circuit or leakage of ele	ectricity caused by conta	ct.	
	se confirm the safety standards or regulations of application devices. se be careful with substrate edges, that may injure your hands.			
· r lea	se de careful with substrate edges, that may injure your hands.			
10 Other				
	rantee covers the compliance to the quality standards mentioned in the sp			
	ever it does not cover the compatibility with application of the end-use, in	assembly		
	usage environment. se any quality problems occurred in the application of end-use, details w	ill be concretely discusse	d	
	letermined between the parties hereto.	in oc separatery discusse	u	
and	seemined between the parties nereto.			

(Note) Characteristics data shown here are for reference purpose only. (Not guaranteed data)